$\gdef\leq{\leqslant}$ $\gdef\geq{\geqslant}$ $\gdef\lrb#1{\lbrace#1\rbrace}$ $\gdef\norm#1{\Vert#1\Vert}$ $\gdef\intrn{\int_{\R^n}}$ $\gdef\qed{~\tag*{\Large□}}$ $\gdef\act#1{\lt#1\gt}$
定义 设$K\in L^1_{loc}(\R^n\backslash\lrb{0})$满足
(I)$\exist$常数$c_1>0~.s.t~\forall 0<\varepsilon<N$,有$|\int_{\varepsilon<|x|<N}K(x)dx|\leq c_1$且对给定的$N,\lim\limits_{\varepsilon\rarr0}\int_{\varepsilon\lt|x|\lt N}K(x)dx$存在.
(II)$\exist c_2>0~s.t.~\forall R>0$有$\int_{|x|\lt R}|K(x)||x|dx\leq c_2R$
(III)(Harmander条件)
$\exist$常数$c_3>0~s.t.~\forall y\neq0,\int_{|x|\geq2|y|}|K(x-y)-K(x)|dx\leq c_3$
则称$K(x)$是一个广义的$Calder\acute{o}n-Zygmund$奇异积分(也简称$C-Z$核),$c_i(i=1,2,3)$为$K(x)$的$C-Z$常数.
引理 设$K(x)$为$C-Z$核,$0\lt\varepsilon_0\lt N_0$给定,$K_{\varepsilon_0,N_0}(x)=K(x)\Chi_{\lrb{x|\varepsilon_0\leq|x|\lt N_0}}(x)$,则$K_{\varepsilon_0,N_0}$也是$C-Z$核,且它的$C-Z$常数只依赖于$K(x)$的$C-Z$常数与维数$n$,与$\varepsilon_0,N_0$无关.
证明:周民强《调和分析讲义》第130页
注:$K_{\varepsilon,N}$是$K(x)$的截断$C-Z$核
引理 设$K(x)$是$C-Z$核,则$|\widehat{K_{\varepsilon,N}}(\xi)|\leq c~(\forall\xi\in\R^n)$,且$c$只依赖于$K(x)$的$C-Z$核.
证明:131页.
定理 设$K\in L^1(\R^n)$满足Hormander条件,$$ \sup_{y\neq0}\int_{|x|\geq2|y|}|K(x-y)-K(x)|dx\leq c_\ast~and~Tf(x)\overset{def}{=}K\ast f(x) $$ 若$T$是强$(p_0,p_0)$型(某个$1\lt p_0\lt\infty$),则$\forall 1<p<\infty$,$T$是强$(p,p)$型,且它的模与$\norm{K}_{L^1}$无关(只依赖于$c_\ast,\norm{T}_{L^{p_0}\rarr L^{p_0}}$)
证明:由Hormander条件,BCP的两个条件成立. Thanks to BCP 定理,我们得到$T$为弱(1,1)型,又$T$是强$(p_0,p_0)$型(某个$1\lt p_0\lt\infty$). 由Marcinkiewicz插值定理,$T$是强$(q,q)$型($\forall 1<q<p_0$).另一方面,由对偶,令$\tilde{K}(x)=K(-x),\tilde{T}f(x)=\tilde{K}\ast f(x)$,可验证$\tilde{T}$也满足Hormander条件.
断言 $\forall\frac1p+\frac1q=1,T$是$L^p$有界$\lrArr\tilde{T}$是$L^{p'}$有界($1\lt p,p'\lt\infty$)并且它们有相同的模.
事实上,$\forall g\in L^{p'},f\in L^p.~\act{Tf,g}=\intrn K\ast f(x)g(x)dx=\intrn f(x)\tilde{K}\ast g(x)dx=\act{f,\tilde{T}g}$
现在已经证明了$T$是强$(p,p)$型($1<p<p_0$)
$\rArr\tilde{T}$是强$(q,q)$型($p'_\lt p\lt\infty$)
$\norm{\tilde{T}}_{L^q\rarr L^q}=\norm{T}_{L^{q'}\rarr L^{q'}}$与$\norm{K}_{L^1}$无关,而$\tilde{T}f(x)=\tilde{K}\ast f(x)$
$\tilde{K}\in L^1$满足(H)条件$\overset{BCP}{\rArr}\tilde{T}$是弱$(1,1)$型,又$\tilde{T}$为强$(q,q)$型,$\forall p'_0\lt q\lt\infty$
$\rArr\tilde{T}$是强$(p,p)$型,$\forall 1\lt p\lt\infty$
$\overset{Claim}{\rArr}T$是强$(p,p)$型($\forall 1\lt p\lt\infty$)且它的模与$\norm{K}_{L^1}$无关 $$\qed$$
定理 设$K(x)$是$C-Z$核,$T_\varepsilon f(x)=\int_{|x-y|\gt\varepsilon}K(x-y)f(y)dy\quad(2.1)$. ($\forall\varepsilon>0~given$) ($\forall f\in L^p(\R^n),1\lt p\lt\infty$)
则$\exist$常数$c_p>0~s.t.~\forall f\in L^p(\R^n),\forall\varepsilon>0$有$\norm{T_\varepsilon f}_{L^p}\leq c_p\norm{f}_{L^p}\quad(2.2)$且$T_\varepsilon f\overset{strong}{\rarr}Tf~in~L^p(\R^n)~for~some~Tf\in L^p$
进一步,$\norm{Tf}_{L^p}\leq c_p\norm{f}_{L^p}~(\forall f\in L^p(\R^n))$
注:$Tf(x)=\lim\limits_{\varepsilon\rarr0}T_\varepsilon f(x)=P.V.\intrn K(x-y)f(y)dy$
证明:$1^\circ ~f\in C^\infty_c(\R^n),2^\circ~f\in L^p(\R^n)~(1\lt p\lt\infty)$
$1^\circ~\forall 0\lt\varepsilon\lt N$(给定),$f\in C^\infty_c(\R^n)$
$K_{\varepsilon,N}(x)=K(x)\Chi_{\varepsilon\lt|x|\lt N}(x)$,令$T_{\varepsilon,N}f(x)=K_{\varepsilon,N}\ast f(x)$
由引理,$\norm{\widehat{K_{\varepsilon,N}}}_{L^\infty}\leq c$
$$
\begin{aligned}
\norm{T_{\varepsilon,N}f}_{L^2}&=\norm{\widehat{T_{\varepsilon,N}f}}_{L^2}\\
&=\norm{\widehat{K_{\varepsilon,N}}(\xi)\hat{f}(\xi)}_{L^2}\\
&\leq c\norm{\hat{f}}_{L^2}=c\norm{f}_{L^2}
\end{aligned}
$$ $\rArr T_{\varepsilon,N}$是强$(2,2)$型. 而$K_{\varepsilon,N}\in L^1(\R^n),K_{\varepsilon,N}$满足Hormander条件(由引理)
$\rArr T_{\varepsilon,N}$是强$(p,p)$型(由前定理)
$i.e.~\forall 1\lt p\lt\infty,\exist c_p>0~s.t.~(\forall 0\lt\varepsilon\lt N),\norm{T_{\varepsilon,N}f}_{L^p}\leq c_p\norm{f}_{L^p}$
而$f\in C^\infty_c(\R^n),T_\varepsilon f(x)=T_{\varepsilon,N}f(x),\forall x\in\R^n$
当$N$足够大,$N>|x|+2diam|Supp(f)|$ $$
\begin{aligned}
K_{\varepsilon,N}\ast f(x)&=\int_{\varepsilon\lt|x-y|\lt N}K(x-y)f(y)dy\\
&=\int_{\varepsilon\lt|x-y|}K(x-y)f(y)dy
\end{aligned}
$$ $\overset{Fatou}{\rArr}\norm{T_\varepsilon f}_{L^p}\leq c_p\norm{f}_{L^p},\forall f\in C^\infty_c(\R^n)$
下证$Tf$的存在性
$\forall f\in C^\infty_c(\R^n),\lrb{T_\varepsilon f}_{\varepsilon>0}$为$L^p(\R^n)$中的Cauchy列
事实上,$$
\begin{aligned}
\forall 0\lt\eta\lt\varepsilon,~&T_\eta f(x)-T_\varepsilon f(x)\\
&=\int_{\eta\lt|y|\leq\varepsilon}K(y)f(x-y)dy\\
&=\int_{\eta\lt|y|\leq\varepsilon}K(y)(f(x-y)-f(x))dx\\
&+f(x)\int_{\eta\lt|y|\leq\varepsilon}K(y)dy=J_1+J_2
\end{aligned}
$$
注意$\intrn|f(x-y)-f(x)|^pdx\leq c|y|^p$(以前可能证过)
对$J_1$,$$
\begin{aligned}
\norm{J_1}_{L^p}&\leq c\int_{\eta\lt|y|\leq\varepsilon}|K(y)|\norm{f(x-y)-f(y)}_{L^p}\\
&\leq c\int_{\eta\lt|t|\leq\varepsilon}|K(y)||y|dy\\
&\leq cc_2\varepsilon
\end{aligned}
$$ 对$J_2$,由C-Z核的条件(I),$\lim\limits_{\eta\rarr0}\int_{\eta\lt|y|\leq1}K(y)dy$存在
$\rArr\lim\limits_{\eta\rarr0,\varepsilon\rarr0}|\int_{\eta\lt|y|\leq\varepsilon}K(y)dy|=0$
$\rArr\norm{J_2}_{L^p}\leq|\int_{\eta\lt|y|\leq\varepsilon}K(y)dy|\cdot\norm{f}_{L^p}=o(1)~as~\eta,\varepsilon\rarr0$
$\rArr\eta,\varepsilon\rarr0,~\norm{J_1+J_2}_{L^p}\rarr0~i.e.~\norm{T_\eta f(x)-T_\varepsilon f(x)}_{L^p}\rarr0$
$\rArr\lrb{T_\varepsilon f}_{\varepsilon>0}$是$L^p(\R^n)$中的Cauchy列($1\lt p\lt\infty$)
$\exist!Tf\in L^p~s.t.~\lim\limits_{\varepsilon\rarr0}\norm{T_\varepsilon f-Tf}_{L^p}\rarr0$
$\rArr Tf(x)=P.V.\intrn K(x-y)f(y)dy$且$\norm{Tf}_{L^p}\leq c_p\norm{f}_{L^p}~(\forall f\in L^p)$
$2^\circ~\forall f\in L^p(\R^n)~(1\lt p\lt\infty),\forall\varepsilon>0,f=g+h,g\in C^\infty_c(\R^n),\norm{h}_{L^p}\lt\delta$(由$C^\infty_c$在$L^p$中稠密)
$$
\begin{aligned}
\norm{T_\varepsilon f-T_\eta f}_{L^p}&\leq\norm{T_\eta(f-g)}_{L^p}+\norm{T_\eta g-T_\varepsilon g}_{L^p}+\norm{T_\varepsilon(f-g)}_{L^p}\\
&\leq c\norm{f-g}_{L^p}~(\eta,\varepsilon\rarr0)\\
&\lt c\delta
\end{aligned}
$$ $\rArr\lrb{T_\varepsilon}_{\varepsilon>0}$是$L^p$中Cauchy列
$\rArr\forall f\in L^p(\R^n),\lim\limits_{\varepsilon\rarr0}\norm{T_\varepsilon f-Tf}_{L^p}=0$且$\norm{Tf}_{L^p}\leq c_p\norm{f}_{L^p},Tf(x)=P.V.\intrn K(x-y)f(y)dy$ $$\qed$$