极大函数

$\gdef\leq{\leqslant}$ $\gdef\geq{\geqslant}$ $\gdef\lrb#1{\lbrace#1\rbrace}$ $\gdef\norm#1{\Vert#1\Vert}$ $\gdef\tzq#1#2{\large{\chi}\tiny_{B(#1,#2)}\normalsize}$

一些记号:$A\subseteq\R^n$可测,$m(A),|A|$为Lebsgue测度.
$\forall x\in\R^n,r>0,B(x,r)=B_x(r)=B_r(x)=\lrb{y\in\R^n:|y-x|<r}$为开球,$aB(x,r)=B(x,ar)$.
假设$f\in L^1_{loc}(\R^n)$($i.e.~\forall K\subseteq\R^n$为紧集,$f\in L^1(K)$即局部可积$\int_K|f(x)|d\mu<+\infty$),$|f|$在$B(x,\delta)$上的平均值为$$ \underset{B(x,\delta)}{Avg}|f|=\frac{\int_{B(x,\delta)}|f(y)|dy}{m(B(x,\delta))} $$,$m(B(x,\delta))=m(B(0,\delta))=\delta^n m(B(0,1))=\delta^n\nu_n$,$\nu_n$表示单位球体积$\nu_n=\frac{\pi^\frac{n}2}{\Gamma(\frac{n}{2}+1)}$
$\tzq{0}{\delta}(z)=\tzq01(\delta^{-1}z)$
$$ \begin{aligned} \underset{B(x,\delta)}{Avg}|f|=\frac{1}{\nu_n\delta^n}\int_{B(x,\delta)}|f(y)|dy&=\frac{1}{\nu_n\delta^n}\int_{|x-y|<\delta}|f(y)|dy\\ &=\frac{1}{\nu_n\delta^n}\int_{|z|<\delta}|f(x-z)|dz\\ &=\frac{1}{\nu_n\delta^n}\int_{\R^n}|f(x-z)|\tzq0\delta(z)dz\\ &=\frac{1}{\nu_n\delta^n}\int_{\R^n}|f(x-z)|\tzq01(\delta^{-1}z)dz\\ &=\int_{\R^n}|f(x-z)|\nu_n^{-1}\delta^{-n}\tzq01(\delta^{-1}z)dz\\ &=(|f|\ast\nu_n^{-1}\delta^{-n}\tzq01(\delta^{-1}\cdot))(x) \end{aligned} $$

定义 $\forall f\in L^1_{loc}(\R^n)$,函数$$ \begin{aligned} M(f)(x)=\sup_{\delta>0}\underset{B(x,\delta)}{Avg}|f|&=\sup_{\delta>0}\frac{1}{\nu_n\delta^n}\int_{|y|<\delta}|f(x-y)|dy\\ &=\sup_{\delta>0}\frac{1}{m(B(x,\delta))}\int_{B(x,\delta)}|f(y)|dy \end{aligned} $$ 称为$f$的中心$Hardy-Littlewood$极大函数,$M$为$H-L$极大算子.

一些基本性质:
(1) $M(|f|)(x)=M(f)(x)\geq0,\forall f\in L^1_{loc}(\R^n)$
(2) $\norm{M(f)}_{L^\infty}\leq\norm{f}_{L^\infty},\forall f\in L^\infty(\R^n)$,即$M$是$(\infty,\infty)-$型.
(3) $|f(x)|\leq M(f)(x)~a.e.~x\in\R^n(\rArr\norm{M(f)}_{L^\infty}=\norm{f}_{L^\infty})$
(4) M是次线性的$i.e.\begin{cases}M(f+g)\leq M(f)+M(g),&\forall f,g\in L^1_{loc}\\M(\lambda f)=|\lambda|M(f),&\forall\lambda\in\R\end{cases}$
(5) $E_{Mf}(\alpha)=\lrb{x\in\R^n|M(f)(x)>\alpha}$对$\forall\alpha>0$给定是$\R^n$上的开集($d_{Mf}(\alpha)=m(E_{Mf}(\alpha))$).

(5)的证明:只需证$\R^n\backslash E_{Mf}(\alpha)$是闭集. 事实上,假设$\lrb{x_{(k)}}_{k\in\N}\subset\R^n\backslash E_{Mf}(\alpha)$且$x_{(k)}\rarr x(k\rarr\infty)\in\R^n$,只需证$$ \sup_{\delta>0}\frac1{m(B(x,\delta))}\int_{B(x,\delta)}|f(y)|dy\leq\alpha(\rArr x\in\R^n\backslash E_{Mf}(\alpha)) $$ 定义$Q_k=B(x_k,\delta),Q=B(x,\delta)$,对称差$Q_k\triangle Q=(Q_k\backslash Q)\cup(Q\backslash Q_k),f_k(y)=f(y)\chi_{Q_k\triangle Q}(y)$
$\rArr\forall y\in\R^n,|f_k(y)|\leq|f(y)|$且$\lim\limits_{k\rarr\infty}f_k(y)=0,\forall~a.e.~y\in\R^n$,则$$ \lim_{k\rarr\infty}\frac1{|Q|}\int_Q|f_k(y)|dy=\frac1{|Q|}\int_Q\lim\limits_{k\rarr\infty}|f_k(y)|dy=0 $$ (Lebsgue控制收敛定理,$\int_Q|f_k(y)|dy\leq\int_Q|f(y)|dy<+\infty,\lim\limits_{k\rarr\infty}|f_k(y)|dy=0$)
另一方面,因为$x_k\in\R^n\backslash E_{Mf}(\alpha)$, $$ \frac{1}{|Q|}\int_{Q_k}|f(y)|dy=\frac{1}{|Q_k|}\int_{Q_k}|f(y)|dy\leq\alpha $$ $$ \begin{aligned} \rArr\frac1{|Q|}\int_Q|f(y)|dy&\leq\frac{1}{|Q|}\int_{Q_k}|f(y)|dy+\frac1{|Q|}\int_{Q\backslash Q_k}|f(y)|dy\\ &\leq\alpha+\frac1{Q}\int_Q|f(y)\chi_{Q\backslash Q_k}(y)|dy\\ &=\alpha+\frac1{|Q|}\int_Q|f_k(y)|dy \end{aligned} $$ 令$k\rarr\infty$得$\frac1{|Q|}\int_Q|f(y)|dy\leq\alpha~i.e.~\forall\delta>0,\frac1{|B(x,\delta)|}\int_{B(x,\delta)}|f(y)|dy\leq\alpha$
对$\delta>0$取上界,得$Mf(x)\leq\alpha\rArr x\in\R^n\backslash E_{Mf}(\alpha)$

注:任何开集$U\subset\R^n,\exist K_j\subset U$为紧集,$\lim\limits_{j\rarr\infty}m(K_j)=mU$

例. $\R$上的$f(x)=\begin{cases}1~&x\in(a,b)\\0~&otherwise\end{cases}=\chi_{(a,b)}(x)$,求$M(f)(x)$.

$$ \begin{aligned} \frac{1}{|B(x,\delta)|}\int_{B(x,\delta)}|f(y)|dy&=\frac{1}{2\delta}\int_{y\in(x-\delta,x+\delta)}f(y)dy\\ &=\frac{1}{2\delta}\int_{y\in(x-\delta,x+\delta)}\chi_{(a,b)}(y)dy\\ &=\frac{1}{2\delta}\int_{(x-\delta,x+\delta)\cap(a,b)}1dy\\ &=\frac1{2\delta}m((x-\delta,x+\delta)\cap(a,b)) \end{aligned} $$ 经过计算得到$$ Mf(x)=\begin{cases} \frac{b-a}{2(x-a)}~&x\geq b\\ 1~&x\in(a,b)\\ \frac{b-a}{2(b-x)}~&x\leq a \end{cases} $$

定义 非中心的$H-L$极大函数,$f\in L^1_{loc}(\R^n),\widetilde{M}f(x)=\displaystyle\sup_{\overset{\delta>0}{x\in B(y,\delta)}}\underset{B(y,\delta)}{Avg}|f|=\displaystyle\sup_{\overset{\delta>0}{|x-y|<\delta}}\frac1{m(B(y,\delta))}\int_{B(y,\delta)}|f(z)|dz$

$E_{\widetilde{M}f}(\alpha)=\lrb{x\in\R^n|\widetilde{M}f(x)>\alpha}$为开集.

$M(f)(x)\geq\frac{\int_{B(0,R)}|f(y)dy|}{\nu_n(|x|+R)^n}$,若$f\in L^1_{loc}(\R^n),M(f)\in L^1(\R^n)$则$f=0~a.e.$,所以$M$不是(1,1)-型

但$\frac{1}{(|x|+R)^n}\in L^{1,\infty}(\R^n)$,下证$Mf\in L^{1,\infty}(\R^n),\forall f\in L^1$(即M为弱(1,1)型)

引理 设$\lrb{B_1,B_2,\cdots,B_k}$为有限个$\R^n$上的开球,则存在有限子集$\lrb{B_{j_1},\cdots,B_{j_l}}$,其中元素两两不相交且满足$\displaystyle\sum^l_{r=1}|B_{j_r}|\geq3^{-n}|\bigcup^k_{i=1}B_i|$

$Lemma$ Let $\lrb{B_1,B_2,\cdots,B_k}$ be a finite collection of open balls in $\R^n$. Then there exists finite subcollection $\lrb{B_{j_1},\cdots,B_{j_l}}$ of pairwise disjoint balls such that $\displaystyle\sum^l_{r=1}|B_{j_r}|\geq3^{-n}|\bigcup^k_{i=1}B_i|$

证明:$1^\circ$ 对集合重新排序使得$|B_1|\geq|B_2|\geq...\geq|B_k|$
$2^\circ$ 设$j_1=1,j_2=min\lrb{s\in\lrb{2,...,k}|B_s\cap B_1=\empty},j_3=min\lrb{s>j_2|(B_{j_1}\cup B_{j_2})\cap B_s=\empty}...$这样下去可得$\lrb{j_1,...,j_i}$,取$j_{i+1}=min\lrb{s>j_i|B_s\cap(\cup^i_{m=1}B_{j_m})=\empty}$.
这个过程在l($\leq k$)步后停止,得到$\lrb{B_{j_1},\cdots,B_{j_l}}$.
$3^\circ$ 事实上,$\forall m\in\lrb{1,...,k}\backslash{j_1,...,j_l}$有$B_m\cap(\cup^l_{i=1}B_{j_i})\neq\empty$. 假设$j_{i_0}=min\lrb{j_h|B_{j_h}\cap B_m\neq\empty,h=1,...,l}$,则必然$j_{i_0}<m$. 否则由$B_m\cap\lrb{B_{j_1}\cup...\cup B_{j_{i_0-1}}}=\empty$及$j_{i_0}$定义,$m$在$2^\circ$会被选择,矛盾.
所以$d(B_{j_{i_0}})\geq d(B_m)\rArr B_m\subset3B_{j_{i_0}}$(画图) $$ \rArr\bigcup^k_{m=1}B_m\subset\bigcup^l_{i=1}3B_{j_i}\rArr|\bigcup^k_{m=1}B_m|\leq|\bigcup^l_{i=1}3B_{j_i}|\leq\sum^l_{i=1}|3B_{j_i}|=3^n\sum^l_{i=1}|B_{j_i}| $$ $\rArr\displaystyle\sum^l_{i=1}|B_{j_i}|\geq3^{-n}|\bigcup^k_{m=1}B_m|$

定理 $\widetilde{M}:L^1(\R^n)\rarr L^{1,\infty}(\R^n)$且$\norm{\widetilde{M}f}_{L^{1,\infty}}\leq3^n\norm{f}_{L^1(\R^n)}~(\forall f\in L^1(\R^n))$,从而$\forall p>1,\widetilde{M}:L^p\rarr L^p$有$\norm{\widetilde{M}f}_{L^p}\leq c_{p,n}\norm{f}_{L^p}(\forall f\in L^p),c_{p,n}$为p,n有关常数.

证明:因为$\norm{\widetilde{M}f}_{L^{1,\infty}}=\displaystyle\sup_{\alpha>0}(\alpha d_{\widetilde{M}f}(\alpha))$,只需证$d_{\widetilde{M}f}(\alpha)\leq\frac{3^n}{\alpha}\norm{f}_{L^1}(\forall\alpha>0)$.
事实上,$d_{\widetilde{M}f}(\alpha)=m(E_{\widetilde{M}f}(\alpha))=\displaystyle\sup_{K\subset\subset E_{\widetilde{M}f}}m(K)$.
对任意紧集$K\subset E_{\widetilde{M}f}(\alpha)$给定,$\forall x\in K,\exist$开球$B_x\subset E_{\widetilde{M}f}(\alpha)$,而$E_{\widetilde{M}f}(\alpha)=\lrb{x|\widetilde{M}f(x)>\alpha}$,从而$\frac1{|B_x|}\int_{B_x}|f(y)|dy>\alpha$.
又$\displaystyle\bigcup_{x\in K}B_x\supset K~i.e.~\lrb{B_x|x\in K}$覆盖紧集$K$.
由有限覆盖定理,$\exist$有限个$\lrb{B_{x_1},...,B_{x_k}}$覆盖了$K$,即$K\subset\displaystyle\bigcup^k_{i=1}B_{x_i}$.
由前面的引理,$\exist$两两不相交的一些开球$\lrb{B_{x_{j_1}},...,B_{x_{j_l}}}\subset\lrb{B_{x_1},...,B_{x_k}}~s.t.$ $$ |\bigcup^k_{i=1}B_{x_i}|\leq3^n\sum^l_{r=1}|B_{x_{j_r}}|\rArr|K|\leq3^n\sum^l_{r=1}|B_{x_{j_r}}|. $$ 又$|B_{x_{j_r}}|<\frac1\alpha\int_{B_{x_{j_r}}}|f(y)|dy$,所以$|K|\leq\frac{3^n}{\alpha}\displaystyle\sum^l_{r=1}\int_{B_{x_{j_r}}}|f(y)|dy$
注意$B_{x_{j_r}}$两两不相交,$|K|\leq\frac{3^n}{\alpha}\int_{\bigcup^l_{r=1}B_{x_{j_r}}}|f(y)|dy\leq\frac{3^n}{\alpha}\int_{E_{\widetilde{M}f}(\alpha)}|f(y)|dy$
$\rArr\displaystyle\sup_{K\subset\subset E_{\widetilde{M}f}(\alpha)}|K|\leq\frac{3^n}{\alpha}\int_{E_{\widetilde{M}f}(\alpha)}|f(y)|dy\rArr d_{\widetilde{M}f}(\alpha)=|E_{\widetilde{M}f}(\alpha)|\leq\frac{3^n}{\alpha}\int_{E_{\widetilde{M}f}(\alpha)}|f(y)|dy$
$\rArr\alpha d_{\widetilde{M}f}(\alpha)\leq3^n\norm{f}_{L^1}~(\forall\alpha>0)$,对$\alpha>0$取上界得$\norm{\widetilde{M}f}_{L^{1,\infty}}\leq3^n\norm{f}_{L^1}$.

牛顿-莱布尼兹公式的推广:$f(x)\in C(\R^n),\lim\limits_{\delta\rarr0}\frac1{|B(x,\delta)|}\int_{B(x,\delta)}f(y)dy=f(x),~(\forall x\in\R^n)$.

定理(Lebsgue微分定理) 设$f\in L^1_{loc}(\R^n),Lrf(x)=\frac{1}{|B(x,r)|}\int_{B(x,r)}f(y)dy$,则
(1) $\lim\limits_{r\rarr0}Lrf(x)$存在$a.e.~x\in\R^n$
(2) $\lim\limits_{r\rarr0}Lrf(x)=f(x)~a.e.~x\in\R^n$.

证明:$1^\circ$ 不失一般性,可以假设$f\in L^1(\R^n)$. 事实上,若$f\in L^1_{loc}(\R^n)$,考虑$f_R(x)=f(x)\chi_{|x|<R}(x)$,则$\forall R>0,f_R(x)\in L^1(\R^n),\int_{\R^n}|f_R(x)|dx=\int_{|x|<R}|f(x)|dx\leq\int_{|x|\leq R}|f(x)|dx<+\infty$.
若$f_R(x)\in L^1(\R^n)$定理成立$(\forall R>0)$,则$\lim\limits_{r\rarr0}Lrf_R(x)$存在$a.e.\R^n$
$Lrf(x)=\frac1{|B(x,r)|}\int_{B(x,r)}f(y)dy=\frac1{|B(x,r)|}\int_{B(x,r)}f_R(y)dy,r<\frac{R}{4},f_R(y)=f(y)\chi_{|y|<R}$.
因为$|y|<|x|+r(\forall y\in B(x,r),|y-x|<r).~|x|\leq\frac{R}{2},r<\frac{R}{4}$. 从而$|y|<\frac34R<R$,所以$f_R(y)=f(y)\chi_{|y|<R}=f(y)~(\forall y\in B(x,r),r<\frac{R}4,|x|\leq\frac{R}{2})$
$\rArr Lrf(x)=\frac1{|B(x,r)|}\int_{B(x,r)}f_R(y)dy=Lrf_R(x)~(|x|\leq\frac{R}{2},|r|<\frac{R}{4})$
$i.e.~\lim\limits_{r\rarr0}Lrf(x)$存在$a.e.~|x|\leq\frac{R}{2}.~(\forall R)$
$i.e.~\mu\lrb{x|\lim\limits_{r\rarr0}Lrf(x)~not~exist,|x|\leq\frac{R}{2}}=0(\forall R)$
$\lrb{x\in\R^n|\lim\limits_{r\rarr0}Lrf~not~exist}=\displaystyle\bigcup_{N\in\N}\lrb{x\in\R^n|\lim\limits_{r\rarr0}Lrf~not~exist,|x|<N}$.
$\forall N,$取$R=2N+1\rArr\mu(\lrb{x\in\R^n|\lim\limits_{r\rarr0}Lrf~not~exist,|x|<N<\frac{R}{2}})=0$.
$\rArr\mu(\lrb{x\in\R^n|\lim\limits_{r\rarr0}Lrf(x)~not~exist})=0$
$\rArr\lim\limits_{r\rarr0}Lrf(x)$存在$a.e.~x\in\R^n$,所以可以假设$f\in L^1(\R^n)$.

$2^\circ$ 设$\Omega_f(x)=\overline{\lim\limits_{r\rarr0}}Lrf(x)-\underset{r\rarr0}{\underline{\lim}}Lrf(x)$ (即$Lrf(x)$极限点的震荡)(目标:$\Omega_f(x)=0~a.e.~x\in\R^n$)

事实上,分解$f=g+h,g\in C_c(\R^n),\norm{h}_{L^1}<\eta$ (因为$C_c(\R^n)$在$L^1(\R^n)$上稠密,任何可积函数可用具有紧支撑的光滑函数逼近)
因为$\overline{\lim\limits_{r\rarr0}}Lrf(x)\leq\overline{\lim\limits_{r\rarr0}}Lrg+\overline{\lim\limits_{r\rarr0}}Lrh,\underset{r\rarr0}{\underline{\lim}}Lrf(x)\geq\underset{r\rarr0}{\underline{\lim}}Lrg+\underset{r\rarr0}{\underline{\lim}}Lrh$,所以$\Omega_f(x)\leq\Omega_g(x)+\Omega_h(x),\Omega_f$是次线性的.
注意到$g\in C_c(\R^n)$,故$\Omega_g(x)=0,\forall x\in\R^n\rArr\Omega_f(x)\leq\Omega_h(x),\forall x\in\R^n$.
另一方面,$\Omega_h(x)\leq2M(v)(x),\forall v\in L^1_{loc}(\R^n)~a.e.~x\in\R^n$.(因为$Lrv(x)=\frac{1}{|B(x,r)|}\int_{B(x,r)}v(y)dy\leq\frac1{|B(x,r)|}\int_{B(x,r)}|v(y)|dy\leq M(v)(x)$).特别地,$\Omega_h(x)\leq2Mh(x),\forall x\in\R^n$.
因为$M:L^1\rarr L^{1,\infty},\norm{Mh}_{L^{1,\infty}}\leq c\norm{h}_{L^1}\rArr\forall\beta>0,\displaystyle\sup_{\beta>0}d_{Mh}(\beta)\leq \frac{c}{\beta}\norm{h}_{L^1}$
$\rArr d_{\Omega_h}(\alpha)\leq d_{2Mh}(\alpha)=d_{Mh}(\frac{\alpha}{2})\leq c\frac2\alpha\norm{h}_{L^1}\leq\frac{2c}{\alpha}\eta,\forall\alpha>0$
$0\leq d_{\Omega_f(\alpha)}\leq\frac{2c}{\alpha}\eta~(\forall\alpha>0)$,令$\eta\rarr0$得$d_{\Omega_f}(\alpha)=0$
$i.e.~\mu(\lrb{x\in\R^n|\Omega_f(x)>\alpha})=0,\forall\alpha>0$
$\rArr\forall N\in\N,\mu(\lrb{x\in\R^n|\Omega_f(x)>\frac1n})=0$
$\rArr\mu(\displaystyle\bigcup_{N\in\N}\lrb{x\in\R^n|\Omega_f(x)>\frac1n})=0$
$\rArr\mu(\lrb{x\in\R^n|\Omega_f(x)\neq0})=0~i.e.~\Omega_f(x)=0~a.e.~x\in\R^n$
$\rArr\lim\limits_{r\rarr0}Lrf(x)$存在$a.e.~x\in\R^n$.

$3^\circ$ 证明$\lim\limits_{r\rarr0}Lrf(x)=f(x)~a.e.~x\in\R^n$
先证明$\lim\limits_{r\rarr0}f=f~in~L^1~i.e.~\lim\limits_{r\rarr0}\norm{Lrf-f}_{L^1}=0$
事实上,$$ \begin{aligned} Lrf(x)-f(x)&=\frac{1}{|B(x,r)|}\int_{B(x,r)}f(y)dy-f(x)\\ &=\frac{1}{|B(x,r)|}\int_{B(x,r)}f(y)dy-f(x)\frac{1}{|B(x,r)|}\int_{B(x,r)}1dy\\ &=\frac{1}{|B(x,r)|}\int_{B(x,r)}(f(y)-f(x))dy\\ &=\frac{1}{\nu_nr^n}\int_{|z|<r}(f(x-z)-f(x))dz \end{aligned} $$ $$ \begin{aligned} \rArr\norm{Lrf-f}_{L^1(\R^n)}&\leq\frac{1}{\nu_nr^n}\int_{\R^n}\big|\int_{|z|<r}(f(x-z)-f(x))dz\big|dx\\ &\leq\frac{1}{\nu_nr^n}\int_{\R^n}\int_{|z|<r}|f(x-z)-f(x)|dzdx\\ &=\frac{1}{\nu_nr^n}\int_{|z|<r}\int_{\R^n}|f(x-z)-f(x)|dxdz \end{aligned} $$ 因为$w_{f,1}(z)\rarr0(|z|\rarr0),~i.e.~\forall\varepsilon>0,\exist\eta_0>0~s.t.~\forall z:|z|<\eta_0,w_{f,1}(z)<\varepsilon$.
对上述$\varepsilon,\exist r_0=\eta_0>0,\forall r,r<r_0=\eta_0$有$|z|<r<\eta_0\rArr w_{f,1}(z)<\varepsilon$.
$\rArr\norm{Lrf-f}_{L^1(\R^n)}\leq\frac{1}{\nu_nr^n}\int_{|z|<r}\varepsilon dz=\varepsilon\frac{1}{\nu_nr^n}\int_{|z|<r}1dz=\varepsilon$.
$\rArr\lim\limits_{r\rarr0}\norm{Lrf-f}_{L^1(\R^n)}=0$
所以$\exist r_j\rarr0(j\rarr\infty)~s.t.~Lr_jf(x)-f(x)\rarr0~a.e.~x\in\R^n$
$i.e.~\lim\limits_{j\rarr\infty}Lr_jf(x)=f(x)~a.e.~x\in\R^n$
又因为已经证明$\lim\limits_{r\rarr0}Lrf(x)$存在$a.e.~x\in\R^n$,由唯一性得$\lim\limits_{r\rarr0}Lrf(x)=f(x)~a.e.~x\in\R^n$.

该定理的推广

0