卷积和恒等逼近

\gdef\leq{\leqslant} \gdef\geq{\geqslant} \gdef\lrb#1{\lbrace#1\rbrace} \gdef\norm#1{\Vert#1\Vert} \gdef\Rnx{\R^n_x} \gdef\Rny{\R^n_y} \gdef\jn#1#2{(#1\ast#2)} \gdef\intrn{\int_{\R^n}}

定义 f,g:RnRf,g:\R^n\rarr\R勒贝格可测,若 a.e. xRn,f(xy)g(y)L1(Ryn)\forall ~a.e.~ x\in\R^n,f(x-y)g(y)\in L^1(\Rny)(i.e.Rnf(xy)g(y)<+i.e. \intrn|f(x-y)||g(y)|<+\infty),称(fg)(x)=Rnf(xy)g(y)dy\jn f g(x)=\intrn f(x-y)g(y)dyffgg的卷积.

注:11^\circ 平移 τhf(x)f(xh),xRn,hRn\tau_hf(x)\coloneqq f(x-h),\forall x\in\R^n,h\in\R^n
22^\circ (fg)(x)Rnf(xy)g(y)dy=Rnτyf(x)g(y)dy\jn f g(x)\coloneqq\intrn f(x-y)g(y)dy=\int_{\R^n}\tau_yf(x)g(y)dy
33^\circ 变换 (fg)(x)=Rnf(xy)g(y)dy=xy=z,dy=Jdz=dzRnf(z)g(xz)dz=(gf)(x)\jn f g(x)=\intrn f(x-y)g(y)dy\overset{x-y=z,dy=|J|dz=dz}{=}\intrn f(z)g(x-z)dz=\jn g f(x)
4 τh(fg)(x)=(τhfg)(x)=(fτhg)(x)4^\circ~\tau_h\jn f g(x)=\jn {\tau_hf} g(x)=\jn f {\tau_hg}(x)
τ(fg)(x)=(fg)(xh)=Rnf(xhy)g(y)dy=Rn(τhf)(xy)g(y)dy=(τhfg)(x)\tau\jn f g(x)=\jn f g(x-h)=\intrn f(x-h-y)g(y)dy=\intrn (\tau_hf)(x-y)g(y)dy=\jn{\tau_hf}g(x)

引理 如果f,gL1(Rn)f,g\in L^1(\R^n),则xRn,(fg)(x)\forall x\in\R^n,\jn f g(x)存在且fgL1(Rn), fgL1fL1gL1f\ast g\in L^1(\R^n),~\norm{f\ast g}_{L^1}\leq\norm{f}_{L^1}\norm{g}_{L^1}.
证明:存在和可测略. 有(fg)(x)=Rnf(xy)g(y)dy\jn f g(x)=\intrn f(x-y)g(y)dy,由集合平移测度不变有Rnf(xy)dx=Rnf(x)dx, τhf(x)L1(Rxn)=fL1(Rxn)\intrn|f(x-y)|dx=\intrn|f(x)|dx,~\norm{\tau_hf(x)}_{L^1(\Rnx)}=\norm{f}_{L^1(\Rnx)},所以fgL1(Rxn)=RxnRynf(xy)g(y)dydxRxn(Rynf(xy)g(y)dy)dx=Ryng(y)(Rxnf(xy)dx)dy=Ryng(y)dyfL1=fL1gL1 \begin{aligned} \norm{f\ast g}_{L^1(\Rnx)}&=\int_{\Rnx}|\int_{\Rny}f(x-y)g(y)dy|dx\\ &\leq\int_{\Rnx}(\int_{\Rny}|f(x-y)||g(y)|dy)dx\\ &=\int_{\Rny}|g(y)|(\int_{\Rnx}|f(x-y)|dx)dy\\ &=\int_{\Rny}|g(y)|dy\cdot\norm{f}_{L^1}=\norm{f}_{L^1}\norm{g}_{L^1} \end{aligned}

注:1 f,g,hL1(Rn), (fg)h=f(gh)L11^\circ~f,g,h\in L^1(\R^n),~\jn f g\ast h=f\ast\jn g h\in L^1
2 (f+g)h=fh+gh2^\circ~(f+g)\ast h=f\ast h+g\ast h
3 (L1(Rn),)3^\circ~(L^1(\R^n),\ast)是代数.

例 (1) R1\R^1上的f(x)={1,x[1,1]0,otherwisef(x)=\begin{cases}1,&x\in[-1,1]\\0,&otherwise\end{cases},求(ff)(x)=Rf(xy)f(y)dy=1y1f(xy)dy\jn f f(x)=\int_\R f(x-y)f(y)dy=\int_{-1\leq y\leq1}f(x-y)dy
1 x>2,y[1,1]xy>1f(xy)0(ff)(x)=01^\circ~x>2,y\in[-1,1]\rArr x-y>1\rArr f(x-y)\equiv0\rArr\jn f f(x)=0
2 x<2,y[1,1]xy<1(ff)(x)=02^\circ~x<2,y\in[-1,1]\rArr x-y<-1\rArr\jn f f(x)=0
3 x[0,2],(ff)(x)=11f(xy)dy=y[1,1],xy[1,1]1dy=1+x11dy=2x3^\circ~x\in[0,2],\jn f f(x)=\int^1_{-1}f(x-y)dy=\int_{y\in[-1,1],x-y\in[-1,1]}1dy=\int^1_{-1+x}1dy=2-x
4 x[2,0],(ff)(x)=2+x4^\circ~x\in[-2,0],\jn f f(x)=2+x
综上,(ff)(x)={2xx<20otherwise\jn f f(x)=\begin{cases}2-|x|&|x|<2\\0&otherwise\end{cases},是个连续函数.

基本卷积不等式
定理(Minkovski不等式) 设1p, fLp(Rn),gL1(Rn)1\leq p\leq\infty,~f\in L^p(\R^n),g\in L^1(\R^n),有fgLp(Rn)f\ast g\in L^p(\R^n)fgLpfLpgL1\norm{f\ast g}_{L^p}\leq\norm{f}_{L^p}\norm{g}_{L^1}.
证明:1 p=1,fgL1fL1gL11^\circ~p=1,\norm{f\ast g}_{L^1}\leq\norm{f}_{L^1}\norm{g}_{L^1}已证.
2 p=,xRn,2^\circ~p=\infty,\forall x\in\R^n, (fg)(x)=Rnf(xy)g(y)dyRnf(xy)g(y)dyfLRng(y)dy=fLgL1 \begin{aligned} |\jn f g(x)|&=|\intrn f(x-y)g(y)dy|\\ &\leq\intrn|f(x-y)||g(y)|dy\\ &\leq\norm{f}_{L^\infty}\intrn|g(y)|dy\\ &=\norm{f}_{L^\infty}\norm{g}_{L^1} \end{aligned} fgLfLgL1\rArr \norm{f\ast g}_{L^\infty}\leq\norm{f}_{L^\infty}\norm{g}_{L^1}
3 1<p<,3^\circ~1<p<\infty, (fg)(x)=Rnf(xy)g(y)dyRnf(xy)g(y)dy=Rnf(xy)g(y)1pg(y)1pdy(Rn(f(xy)g(y)1p)pdy)1p(Rng(y)1ppdy)1p=(Rnf(xy)pg(y)dy)1p(Rng(y)dy)1p \begin{aligned} |\jn f g(x)|&=|\intrn f(x-y)g(y)dy|\\ &\leq\intrn|f(x-y)||g(y)|dy\\ &=\intrn|f(x-y)||g(y)|^\frac1p|g(y)|^\frac1{p'}dy\\ &\leq(\intrn(|f(x-y)||g(y)|^\frac1p)^pdy)^\frac1p(\intrn|g(y)|^{\frac1{p'}\cdot p'}dy)^\frac1{p'}\\ &=(\intrn|f(x-y)|^p|g(y)|dy)^\frac1p(\intrn|g(y)|dy)^\frac1{p'} \end{aligned} Rn(fg)(x)pdxRnRnf(xy)pg(y)dygL1ppdx=gL1ppRn(Rnf(xy)pg(y)dy)dx=gL1ppRyng(y)(Rxnf(xy)pdx)dy=gL1ppfLppgL1=fLppgL1p \begin{aligned} \rArr\intrn|\jn f g(x)|^pdx&\leq\intrn\intrn|f(x-y)|^p|g(y)|dy\cdot\norm{g}_{L^1}^\frac{p}{p'}dx\\ &=\norm{g}_{L^1}^\frac{p}{p'}\intrn(\intrn|f(x-y)|^p|g(y)|dy)dx\\ &=\norm{g}_{L^1}^\frac{p}{p'}\int_{\Rny}|g(y)|(\int_{\Rnx}|f(x-y)|^pdx)dy\\ &=\norm{g}_{L^1}^\frac{p}{p'}\norm{f}^p_{L^p}\norm{g}_{L^1}\\ &=\norm{f}^p_{L^p}\norm{g}^p_{L^1} \end{aligned} fgLpfLpgL1\rArr\norm{f\ast g}_{L^p}\leq\norm{f}_{L^p}\norm{g}_{L^1}

定理(Young不等式) 设1p,q,r s.t. 1+1r=1p+1q1\leq p,q,r\leq\infty~s.t.~1+\frac1r=\frac1p+\frac1q,则fLp(Rn),gLq(Rn)\forall f\in L^p(\R^n),g\in L^q(\R^n)fgLr(Rn)f\ast g\in L^r(\R^n)fgLrfLpgLq\norm{f\ast g}_{L^r}\leq\norm{f}_{L^p}\norm{g}_{L^q}

定理(Young不等式,弱型) 设1p,1<q,r< s.t. 1+1r=1p+1q1\leq p\leq\infty,1<q,r<\infty~s.t.~1+\frac1r=\frac1p+\frac1q,则cp,q,r>0 s.t. fLp(Rn),gLq,(Rn)\exist c_{p,q,r}>0~s.t.~\forall f\in L^p(\R^n),g\in L^{q,\infty}(\R^n)fgLr,f\ast g\in L^{r,\infty}fgLr,(Rn)cp,q,rfLpgLq,\norm{f\ast g}_{L^{r,\infty(\R^n)}}\leq c_{p,q,r}\norm{f}_{L^p}\norm{g}_{L^{q,\infty}}

不存在f0L1(Rn) s.t. f0f=f=ff0,fL1(Rn)f_0\in L^1(\R^n)~s.t.~f_0\ast f=f=f\ast f_0,\forall f\in L^1(\R^n),但有Dirac delta distributionδ0(x):<δ0,f>=f(0),fCc(Rn)\delta_0(x):<\delta_0,f>=f(0),\forall f\in C_c(\R^n)Cc(Rn)={fC(Rn)KRn s.t. fKC0}C_c(\R^n)=\lrb{f\in C(\R^n)|\exist K\subset\subset \R^n~s.t.~f|_{K^C}\equiv0}KRnK\subset\subset \R^nKK为紧集,则有δ0f=f=fδ0\delta_0\ast f=f=f\ast\delta_0


恒等逼近
定义 一个恒等逼近(ε0\varepsilon\rarr0)是L1(Rn)L^1(\R^n)上的一族函数kεk_\varepsilon且满足:
(i) c>0 s.t. kεL1(Rn)c  (ε>0)\exist c>0~s.t.~\norm{k_\varepsilon}_{L^1(\R^n)}\leq c~~(\forall\varepsilon>0) (一致有界)
(ii) Rnkε(x)dx=1  (ε>0)\intrn k_\varepsilon(x)dx=1~~(\forall\varepsilon>0)
(iii) \forall给定的U(0)U(0)(0Rn0\in\R^n的邻域),limε0UC(0)kε(x)dx=0,UC(0)=Rn\U(0)\displaystyle\lim_{\varepsilon\rarr0}\int_{U^C(0)}|k_\varepsilon(x)|dx=0,U^C(0)=\R^n\backslash U(0)

例(1) 设k(x)L1(Rn)k(x)\in L^1(\R^n)Rnk(x)dx=1 (fL1,fdx0,fRnfdxdx=1)\intrn k(x)dx=1~(f\in L^1,\int fdx\neq0,\int\frac{f}{\intrn fdx}dx=1)
定义kε(x)=εnk(ε1x)   (ε>0)k_\varepsilon(x)=\varepsilon^{-n}k(\varepsilon^{-1}x)~~~(\forall\varepsilon>0),则{kε(x)}ε>0\lrb{k_\varepsilon(x)}_{\varepsilon>0}是一个恒等逼近.
验证:(i) kεL1=Rnεnk(ε1x)dx=y=ε1x,dx=εnyRnεnk(y)εndy=Rnk(y)dy=kL1\norm{k_\varepsilon}_{L^1}=\intrn\varepsilon^{-n}|k(\varepsilon^{-1}x)|dx\overset{y=\varepsilon^{-1}x,dx=\varepsilon^ny}{=}\intrn\varepsilon^{-n}|k(y)|\varepsilon^ndy=\intrn|k(y)|dy=\norm{k}_{L^1}为与ε\varepsilon无关的常数. (ii)由(i)显然
(iii) U(0),δ0>0 s.t. Bδ0(0)U(0)UC(0)Bδ0C(0)={xRn:x>δ0}\forall U(0),\exist\delta_0>0~s.t.~B_{\delta_0}(0)\subseteq U(0)\rArr U^C(0)\subseteq B^C_{\delta_0}(0)=\lrb{x\in\R^n:|x|>\delta_0},从而0UC(0)kε(x)dxBδ0C(0)kε(x)dx=x>δ0εnk(ε1x)dx=y>ε1δ0k(y)dy0\leq\int_{U^C(0)}|k_\varepsilon(x)|dx\leq\int_{B^C_{\delta_0}(0)}|k_\varepsilon(x)|dx=\int_{|x|>\delta_0}\varepsilon^{-n}|k(\varepsilon^{-1}x)|dx=\int_{|y|>\varepsilon^{-1}\delta_0}|k(y)|dy
因为kL1,kdy<+k\in L^1,\int|k|dy<+\infty,有limε0y>δ0εk(y)dy=0\displaystyle\lim_{\varepsilon\rarr0}\int_{|y|>\frac{\delta_0}{\varepsilon}}|k(y)|dy=0,由两边夹即证.

(2) R1\R^1P(x)=1π(x2+1)   (xR),RP(x)dx=1P(x)=\frac1{\pi(x^2+1)}~~~(\forall x\in\R),\int_\R|P(x)|dx=1,令Pε=ε1P(ε1x)P_\varepsilon=\varepsilon^{-1}P(\varepsilon^{-1}x),则{Pε(x)}ε>0\lrb{P_\varepsilon(x)}_{\varepsilon>0}是恒等逼近.
注:εnk(ε1x)\varepsilon^{-n}k(\varepsilon^{-1}x)为尺度变换.

(3) ρ(x)={c0e1x21,x<10,x1\rho(x)=\begin{cases}c_0e^\frac1{ |x|^2-1},&|x|<1\\0,&|x|\geq1\end{cases},取c0=(x<1e1x21dx)1c_0=(\int_{|x|<1}e^\frac1{|x|^2-1}dx)^{-1},有Rnρ(x)dx=1,ρ(x)L1(Rn)ρε(x)=εnρ(ε1x)\intrn\rho(x)dx=1,\rho(x)\in L^1(\R^n)\rArr\rho_\varepsilon(x)=\varepsilon^{-n}\rho(\varepsilon^{-1}x){ρε(x)}ε>0\lrb{\rho_\varepsilon(x)}_{\varepsilon>0}为恒等逼近.

注:(1) ρC(Rn)\rho\in C^\infty(\R^n)
(2) Rn\R^nff的支撑集:{xRnf(x)0}=Supp(f)\overline{\lrb{x\in\R^n|f(x)\neq0}}=Supp(f),若Supp(f)Supp(f)有界,称ff具有紧支撑. fCc(Rn)fC(Rn)f\in C_c(\R^n)\lrArr f\in C(\R^n)ff有紧支撑.

(4) Gauss核. Gε=c0εnex2ε2   (ε>0)G_\varepsilon=c_0\varepsilon^{-n}e^{-\frac{|x|^2}{\varepsilon^2}}~~~(\varepsilon>0)

(5) FejeˊrFej\acute{e}rFN(t)=j=NN(1jN+1)e2πijt=1N+1(sin(π(N+1)t)sin(πt))2F_N(t)=\displaystyle\sum^N_{j=-N}(1-\frac{|j|}{N+1})e^{2\pi ijt}=\frac{1}{N+1}(\frac{sin(\pi(N+1)t)}{sin(\pi t)})^2为恒等逼近.

引入p-norm,p-模,1p<,fLp(Rn)1\leq p<\infty,f\in L^p(\R^n) wf,p(h)=(Rnf(x)f(xh)pdx)1p=fτhfLp w_{f,p}(h)=(\intrn|f(x)-f(x-h)|^pdx)^\frac1p=\norm{f-\tau_hf}_{L^p} 性质 wf,p(h)2fLpw_{f,p}(h)\leq2\norm{f}_{L^p}

引理 (i) 若fL1(Rn)f\in L^1(\R^n)wf,1(h)0(h0)w_{f,1}(h)\rarr0(|h|\rarr0)
(ii) fLp(Rn)   (1<p<)f\in L^p(\R^n)~~~(1<p<\infty)wf,p(h)0(h0)w_{f,p}(h)\rarr0(|h|\rarr0)
证明:(i) 第一步,因为Cc(Rn)C_c(\R^n)L1(Rn)L^1(\R^n)是稠的(实变),所以fL1(Rn)\forall f\in L^1(\R^n)给定,δ>0,fδ(x)Cc(Rn) s.t. fδfL1<δ\forall \delta>0,\exist f_\delta(x)\in C_c(\R^n)~s.t.~\norm{f_\delta-f}_{L^1}<\deltafδL1cfL1\norm{f_\delta}_{L^1}\leq c\norm{f}_{L^1}
f=fδ+fδ~f=f_\delta+\widetilde{f_\delta},其中fδCc(Rn),fδ~:fδ~L1<δf_\delta\in C_c(\R^n),\widetilde{f_\delta}:\norm{\widetilde{f_\delta}}_{L^1}<\delta
第二步,对fδCc(Rn),wfδ,1(h)=Rnfδ(x)fδ(xh)dx2fδL1cfL1f_\delta\in C_c(\R^n),w_{f_\delta,1}(h)=\intrn|f_\delta(x)-f_\delta(x-h)|dx\leq2\norm{f_\delta}_{L^1}\leq c\norm{f}_{L^1}. 由Lebsgue控制收敛定理,limh0wfδ,1(h)=Rnlimh0fδ(x)fδ(xh)dx=0 i.e. wfδ,1(h)0\displaystyle\lim_{|h|\rarr0}w_{f_\delta,1}(h)=\intrn\displaystyle\lim_{|h|\rarr0}|f_\delta(x)-f_\delta(x-h)|dx=0~i.e.~w_{f_\delta,1}(h)\rarr0. 另一方面,wf,1(h)=Rnf(x)f(xh)dx=Rnfδ(x)fδ(x,h)+f~δ(x)f~δ(xh)dxRnfδ(x)fδ(xh)dx+Rnf~δ(x)f~δ(xh)dxwfδ,1(h)+2f~δL1wfδ,1(h)+2δ \begin{aligned} w_{f,1}(h)&=\intrn|f(x)-f(x-h)|dx\\&=\intrn|f_\delta(x)-f_\delta(x,h)+\widetilde{f}_\delta(x)-\widetilde{f}_\delta(x-h)|dx\\ &\leq\intrn|f_\delta(x)-f_\delta(x-h)|dx+\intrn|\widetilde{f}_\delta(x)-\widetilde{f}_\delta(x-h)|dx\\ &\leq w_{f_\delta,1}(h)+2\norm{\widetilde{f}_\delta}_{L^1}\leq w_{f_\delta,1}(h)+2\delta \end{aligned} 从而对δ>0,ε0>0 s.t. h<ε0\forall\delta>0,\exist\varepsilon_0>0~s.t.~\forall|h|<\varepsilon_0wf,1(h)δ+2δ=3δ i.e. limh0wf,1(h)=0w_{f,1}(h)\leq\delta+2\delta=3\delta~i.e.~\displaystyle\lim_{|h|\rarr0}w_{f,1}(h)=0,类似可证(ii).

Minkovski不等式:f(x,y),x,yRn,qpf(x,y),x,y\in\R^n,q\geq pfLpLqfLqLp\norm{\norm{f}_{L^p}}_{L^q}\leq\norm{\norm{f}_{L^q}}_{L^p}

定理 设{kε}ε>0\lrb{k_\varepsilon}_{\varepsilon>0}Rn\R^n上的恒等逼近
(1) 若fLp(Rn)   (1p<)f\in L^p(\R^n)~~~(1\leq p<\infty)则有kεffLp(Rn)0 (ε0)(i.e. kεff in Lp(Rn))\norm{k_\varepsilon\ast f-f}_{L^p(\R^n)}\rarr0\space(\varepsilon\rarr0)(i.e.~k_\varepsilon\ast f\rarr f~in~L^p(\R^n))
(2) 当p=p=\infty,有:若fC(U(K)),U(K)Rnf\in C(U(K)),U(K)\subset\R^n是紧集KRnK\subset\R^n的邻域,kεffL(K)0 i.e. kεff(ε0) on K\norm{k_\varepsilon\ast f-f}_{L^\infty(K)}\rarr0~i.e.~k_\varepsilon\ast f\rightrightarrows f(\varepsilon\rarr0)~on~K
注:集合KK的邻域是有KU(K)K\subset U(K)的开集,有d(K,U)>0d(K,\partial U)>0

证明:(2)略. (1) 1p<,kεf(x)f(x)=Rnkε(y)f(xy)dyf(x)Rnkε(y)dy=Rn(f(xy)f(x))kε(y)dy=y<r(f(xy)f(x))kε(y)dy+yr(f(xy)f(x))kε(y)dy=I1(r,x)+I2(r,x)  (r) \begin{aligned} 1\leq p<\infty,k_\varepsilon\ast f(x)-f(x)&=\intrn k_\varepsilon(y)f(x-y)dy-f(x)\intrn k_\varepsilon(y)dy\\ &=\intrn(f(x-y)-f(x))k_\varepsilon(y)dy\\ &=\int_{|y|< r}(f(x-y)-f(x))k_\varepsilon(y)dy\\ &\quad+\int_{|y|\geq r}(f(x-y)-f(x))k_\varepsilon(y)dy\\ &=I_1(r,x)+I_2(r,x)~~(\forall r) \end{aligned} I1(r,x)Lpy<rf(xy)f(x)kε(y)dyLp(Rxn)y<rkε(y)f(xy)f(x)Lp(Rxn)dy=y<rkε(y)wf,p(y)dy \begin{aligned} \norm{I_1(r,x)}_{L^p}&\leq\norm{\int_{|y|< r}|f(x-y)-f(x)||k_\varepsilon(y)|dy}_{L^p(\Rnx)}\\ &\leq\int_{|y|< r}|k_\varepsilon(y)|\norm{f(x-y)-f(x)}_{L^p(\Rnx)}dy\\ &=\int_{|y|< r}|k_\varepsilon(y)|w_{f,p}(y)dy \end{aligned} 因为δ>0,r0>0 s.t. y<r0,wf,p(y)<δI1(r0,x)Lp(Rxn)δy<r0kε(y)dycδ\forall\delta>0,\exist r_0>0~s.t.~\forall|y|<r_0,w_{f,p}(y)<\delta\rArr\norm{I_1(r_0,x)}_{L^p(\Rnx)}\leq\delta\int_{|y|< r_0}|k_\varepsilon(y)|dy\leq c\delta

I2(r0,x)Lp=yr0(f(xy)f(x))kε(y)dyLp(Rxn)yr0kε(y)wf,p(y)dy2fLpyr0kε(y)dy \begin{aligned} \norm{I_2(r_0,x)}_{L^p}&=\norm{\int_{|y|\geq r_0}(f(x-y)-f(x))k_\varepsilon(y)dy}_{L^p(\Rnx)}\\ &\leq\int_{|y|\geq r_0}|k_\varepsilon(y)|w_{f,p}(y)dy\\ &\leq2\norm{f}_{L^p}\int_{|y|\geq r_0}|k_\varepsilon(y)|dy \end{aligned} limε0yr0kε(y)dy=0\displaystyle\lim_{\varepsilon\rarr0}\int_{|y|\geq r_0}|k_\varepsilon(y)|dy=0,故对上面的δ>0,ε0>0 s.t. 0<ε<δ0,yr0kε(y)dy<δfLpI2Lp(Rxn)2fLpδfLp=2δ\delta>0,\exist\varepsilon_0>0~s.t.~\forall0<\varepsilon<\delta_0,\int_{|y|\geq r_0}|k_\varepsilon(y)|dy<\frac{\delta}{\norm{f}_{L^p}}\rArr\norm{I_2}_{L^p(\Rnx)}\leq2\norm{f}_{L^p}\cdot\frac{\delta}{\norm{f}_{L^p}}=2\delta
综上,δ>0,ε0>0,0<ε<ε0\forall\delta>0,\exist\varepsilon_0>0,\forall0<\varepsilon<\varepsilon_0limε0kεffLp=0\displaystyle\lim_{\varepsilon\rarr0}\norm{k_\varepsilon\ast f-f}_{L^p}=0.

目录
定义1
注1
引理1
注2
例1
定理1
定理2
定理3
定义2
例2
注3
注4
性质1
引理2
定理4